Publications

2026

  1. Editorial for machine learning for understanding the physics of chemical processes
    Jigyasa Nigam, and Max Veit
    Journal of Physics: Condensed Matter, 2026
    Publisher: IOP Publishing

2025

  1. Equivariant Compression of Quantum Operator Representations
    Jigyasa Nigam, Utku Sirin, Tess Smidt, and Stratos Idreos
    NeurIPS ML4PS, 2025
    NeurIPS 2025, ML4PS Workshop
  2. protein.jpg
    Scalable emulation of protein equilibrium ensembles with generative deep learning
    S Lewis, T Hempel, J Jimenez-Luna, M Gastegger, Yu Xie, A Foong, V Satorras, and  others
    Science, 2025
  3. AniSOAP: Machine Learning Representations for Coarse-grained and Non-spherical Systems
    Arthur Yan Lin, Lucas Ortengren, Seonwoo Hwang, Yong-Cheol Cho, Jigyasa Nigam, and Rose K Cersonsky
    Journal of Open Source Software, 2025
  4. pyscfadml.png
    Exploring the design space of machine-learning models for quantum chemistry with a fully differentiable framework
    Divya Suman, Jigyasa Nigam, Sandra Saade, Paolo Pegolo, Hanna Tuerk, Xing Zhang, Garnet Kin Chan, and Michele Ceriotti
    Journal of Chemical Theory and Computation, 2025

2024

  1. thesis.png
    Integrating symmetry and physical constraints into atomic-scale machine learning
    Jigyasa Nigam
    2024
  2. anisoap.png
    Expanding density-correlation machine learning representations for anisotropic coarse-grained particles
    Arthur Lin, Kevin K Huguenin-Dumittan, Yong-Cheol Cho, Jigyasa Nigam, and Rose K Cersonsky
    The Journal of Chemical Physics, 2024
  3. indirect-ham.png
    Electronic Excited States from Physically Constrained Machine Learning
    Edoardo Cignoni, Divya Suman, Jigyasa Nigam, Lorenzo Cupellini, Benedetta Mennucci, and Michele Ceriotti
    ACS Central Science, 2024
  4. 3c-boron.png
    Completeness of atomic structure representations
    Jigyasa Nigam, Sergey N Pozdnyakov, Kevin K Huguenin-Dumittan, and Michele Ceriotti
    APL Machine Learning, 2024

2022

  1. Hamiltonian.gif
    Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties
    Jigyasa Nigam, Michael J Willatt, and Michele Ceriotti
    The Journal of Chemical Physics, 2022
  2. unified-mp.png
    Unified theory of atom-centered representations and message-passing machine-learning schemes
    Jigyasa Nigam, Sergey Pozdnyakov, Guillaume Fraux, and Michele Ceriotti
    The Journal of Chemical Physics, 2022
  3. Roadmap on Machine Learning in Electronic Structure
    H J Kulik, T Hammerschmidt, J Schmidt, S Botti, M A L Marques, M Boley, M Scheffler, M Todorović, P Rinke, C Oses, A Smolyanyuk, S Curtarolo, A Tkatchenko, A P Bartók, S Manzhos, M Ihara, T Carrington, J Behler, O Isayev, M Veit, A Grisafi, J Nigam, M Ceriotti, K T Schütt, J Westermayr, M Gastegger, R J Maurer, B Kalita, K Burke, R Nagai, R Akashi, O Sugino, J Hermann, F Noé, S Pilati, C Draxl, M Kuban, S Rigamonti, M Scheidgen, M Esters, D Hicks, C Toher, P V Balachandran, I Tamblyn, S Whitelam, C Bellinger, and L M Ghiringhelli
    Electron. Struct., Jun 2022

2021

  1. Optimal Radial Basis for Density-Based Atomic Representations
    Alexander Goscinski, Félix Musil, Sergey Pozdnyakov, Jigyasa Nigam, and Michele Ceriotti
    J. Chem. Phys., Jun 2021
  2. long-range.png
    Multi-scale approach for the prediction of atomic scale properties
    Andrea Grisafi, Jigyasa Nigam, and Michele Ceriotti
    Chemical Science, Jun 2021

2020

  1. nice.png
    Recursive evaluation and iterative contraction of N-body equivariant features
    Jigyasa Nigam, Sergey Pozdnyakov, and Michele Ceriotti
    The Journal of Chemical Physics, Jun 2020